Nachklausur Allgemeine und Anorganische Chemie

BSc Biologie

Mitteilung des Prüfungsergebnisses	unter der Matrikel-Nummer *	
	unter dem Pseudonym:	
* BITTE ANKREUZEN		18.10.2012
Name:	Vorname:	
Matrikel Nr.:		

Die Durchführung und Auswertung der 12 Aufgaben im zweiten Teil dieser Klausur mit je vier Aussagen (a-d) erfolgt im Multiple-Choice-Verfahren. Bei jeder Aufgabe werden vier Aussagen gemacht, die richtig oder falsch sein können.

Alle 48 Aussagen des Multiple Choice Teils der Klausur sind zu bewerten:

- => Richtige Aussagen sind durch ein Kreuz in der rechten Spalte neben der Aufgabe zu markieren.
- => Falsche Aussagen sind durch einen Kreis in der rechten Spalte neben der Aufgabe zu markieren.

Es können keine, eine, zwei, drei oder vier Aussagen richtig sein.

Die Bewertung der Multiple Choice-Klausur erfolgt nach der Zahl der korrekt markierten Aussagen: Für vier korrekte markierte Aussagen erhalten sie vier Punkte, für drei korrekte markierte Aussagen drei Punkte, für zwei korrekt markierte Aussagen erhalten sie zwei Punkte, für eine korrekt markierte Aussage erhalten sie einen Punkt und für keine korrekt markierte Aussage erhalten sie null Punkte. Die Bewertung des Multiple Choice Teils erfolgt unter Berücksichtigung der Statistik.

Für Überlegungen und Berechnungen können Sie die Rückseite der Klausurbögen nutzen.

Nr.	Punkte	Nr.	Punkte
1		10	
2		11	
3		12	,
4		13	
5		14	
6		15	
7		16	
8		17	
9		18	

Teil 1: Textfragen

- 1. Aufgabe: pH-Werte bei starken und schwachen Elektrolyten
- a. Sie geben 50 g KOH in 3 l Wasser. Welcher pH stellt sich ein??
- b. Zu der Lösung aus a) geben Sie 2 Liter wässrige Salzsäure, die eine Konzentration von
 0.2 Mol/L aufweist. Welcher pH stellt sich ein?
- c. Skizzieren Sie die Titrationskurve der Lösung a) mit der in b) verwendeten Salzsäure.
- d. Berechnen Sie den pH von Essigsäure mit einer Konzentration von 0.5 Mol/L (H₃CCOOH, pKs = 4.75) in 1 L Wasser
- e. Sie sollen unter Verwendung der in d) angegebenen Essigsäure durch Zugabe von Na-Acetat 500mL eines Puffers mit maximaler Kapazität herstellen. Welche Menge (Masse) müssen Sie einwiegen?

2. Aufgabe

Festes Silberbromid AgBr hat ein Löslichkeitsprodukt von 4 \circ 10⁻¹² mol² L⁻².

a) Formulieren Sie die Bestimmungsgleichungen für das Löslichkeitsprodukt und formulieren dies für den gegeben Fall.

b) Wie groß ist die Gleichgewichtskonzentration an Br⁻ Ionen einer gesättigten Lösung von AgBr in Wasser?

- c) Wie groß ist die Gleichgewichtskonzentration an Br⁻ Ionen einer gesättigten Lösung von AgBr in einer 0,1 M Lösung von AgNO₃?
- d) Warum löst sich AgBr auf, wenn Thiosulfat, $S_2O_3^{\ 2-}$, dazugegeben wird?

3. Aufgabe

Die folgenden Substanzen sollen einzeln (!) in Wasser gegeben werden. Formulieren Sie die Gleichungen für die ablaufenden Reaktionen und geben Sie an, ob die entsprechenden Lösungen sauer (pH<5), annähernd neutral oder alkalisch (pH>9) reagieren.(mit kurzer Begründung!)

a) CaH₂

b) LiCl

c) N₂O₅

d) NaNO₃

e) Na₂CO₃

f) NaCN

4. Aufgabe

Formulieren bzw. vervollständigen Sie die folgenden Redox-Reaktionen in wässriger Lösung (mit Teilgleichungen)

 Cr^{3+} + H_2O_2 + $OH^ \rightarrow$

 As_2O_3 + Zn + H^+ \rightarrow

Cu + HNO₃ →

5. Aufgabe : Wie kör chemische Reaktion	nnen Sie die folgend , physikalische Metl	len Elemente/V node)?	erbindungen/lor	nen nachweisen (z	z.B.
NH ₃					
Cl ₂					
CO ₃ 2-					
Cd ²⁺					

6. Aufgabe: Die thermische Zersetzung von Ammoniumnitrat, NH ₄ NO	₃, führt zu ausschließlich
gasförmigen Produkten	

- a) Formulieren Sie diese Reaktion
- b) Welches Volumen erwarten Sie bei Normalbedingungen, wenn Sie 500 mg zersetzen?

c) Wie groß wäre dieses Gasvolumen bei 450°C?

Teil 2: Multiple Choice Fragen

Markieren Sie jeweils in der rechten Spalte, ob die Aussagen richtig (Kreuz) oder falsch (Kreis/Kringel) ist. Alle Aussagen sind zu bewerten

Aufgabe 7: In welchen der folgenden Verbindungen sind die Oxidationsstufen korrekt angegeben?

a)	K ₂ O ₂ :	K = +II, O = -II
b)	SO ₃ :	S = +VI, O = -II
c)	NH ₃ :	H = +I, N = -III
d)	NaHCO ₃ :	: Na = +I, H= +1, C = +IV, O = -II

Aufgabe 8: Welche der folgenden Aussagen ist richtig?

a)	Bei niedrigen Temperaturen wird die Gleichgewichtslage nur durch die Entropie bestimmt	
b)	Für jede freiwillig ablaufende Reaktion ist $\Delta S < 0$.	
c)	Für jede freiwillig ablaufende Reaktion ist ∆G < 0	
d)	Die Entropie ist besonders wichtig bei Reaktionen von festen Stoffen.	

Aufgabe 9: Machen Sie Aussagen bezüglich den Eigenschaften von Gasen!

a)	Verflüssigte Gase können nicht durch Destillation getrennt werden	
b)	Für ideale Gase ist das Produkt aus Druck und Volumen für eine gegebene Gasmenge bei verschiedenen Temperaturen konstant	
c)	Jedes reale Gas besitzt einen kritischen Punkt	
d)	Edelgase sind wegen ihrer geringen intermolekularen Wechselwirkung gute Modelle für reale Gase	

Aufgabe 10: Stickstoff

a)	Reagiert mit H ₂ endotherm zu NH ₃	
b)	Reagiert mit Mg unter Bildung von Mg ₃ N ₂ , das bei anschließender Hydrolyse NH ₃ freisetzt	
c)	Wird katalytisch mit Sauerstoff zu NO umgesetzt (Teilreaktion des Ostwaldverfahrens)	
d)	Wird großtechnisch durch fraktionierte Destillation der Luft gewonnen	

Aufgabe 11: Ammoniak, NH₃

a)	Ist ein Modellbeispiel für eine Lewis-Base	
b)	Ist ein geruchloses Gas und kann zum Tod durch Ersticken führen	
c)	Löst sich schlecht in Wasser	
d)	Wird durch starke Säuren protoniert und durch starke Basen deprotoniert	

Aufgabe 12: Eisen

	3-1-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
a)	Wird großtechnisch durch Schmelzflusselektrolyse gewonnen	
b)	Ist in der Erdkruste das häufigste Metall	
c)	Bildet die stabilen und daher relativ ungiftigen Cyano-Komplexe [Fe(CN) ₆] ^{4–} und [Fe(CN) ₆] ^{3–}	
d)	Bildet im Alkalischen das schwerlösliche Fe(OH) ₃ , das bei der Aluminiumherstellung eine wichtige Rolle spielt	

Aufgabe 13: Wasserstoff, H₂, Reagiert mit Cl₂ heftig in einer radikalischen Kettentreaktion. Diese Kettenreaktion kann durch Licht gestartet werden. Besitzt wegen seines geringen Molekulargewichtes eine geringe Diffusionsgeschwindigkeit b) Wird großtechnisch hauptsächlich durch Elektrolyse von Wasser hergestellt c) d) Kommt in roten Druckgasflaschen in den Handel. Darin ist der Wasserstoff wegen des hohen Druckes flüssig. Aufgabe 14: Sauerstoff, O2, Kann einen Triplett- und einen Singulettzustand einnehmen. Dabei ist der Singulett-Zustand reaktiver Ist in flüssiger Form (Sdp.: -183°C) eine paramagnetische, hellblaue Flüssigkeit b) Reagiert mit Schwefel bei der Verbrennung zu SO3 C) Hat bei Normalbedingungen als Gas eine höhere Dichte als Luft Aufgabe 15: Welche Aussagen zur Chemie des Schwefels sind richtig Die Schwefelsäure H₂SO₄ ist eine zweiprotonige Säure Schwefel bildet mit Übergangsmetallen Sulfide b) Schwefelsäure ist eine starke oxidierende Säure c) d) Schwefelsäure wird großtechnisch mit aus den entsprechenden Sulfaten nach dem Verdrängungsprinzip hergestellt (starke Säure vs. schwache Säure)

Aufgabe 16: NaCl

a)	Bildet eine Kristallstruktur mit oktaedrischer Koordination beider Atomsorten	
b)	Hat eine höhere Gitterenergie als KBr	
c)	Setzt bei Zugabe von konz. H₂SO₄ HCI-Gas frei	
d)	Bildet mit Wasser eine Lösung, die den Strom leitet	

Aufgabe 17: Die Gitterenergie

a)	Kann mit dem Born-Haber-Kreisprozess berechnet werden
b)	Kann für kovalente Bindungen aus der Elektronegativität abgeschätzt werden
c)	Steigt mit dem Radius der beteiligten Ionen an
d)	Steigt mit der Ladung der beteiligten Ionen an

Aufgabe 18: gegeben sind die folgenden Säuren: 1: HCl, 2: HF, 3: HNO₃, 4: CH₃COOH, 5: NH₃, 6: HI, 7: HCN, 8 H₂CO₃, 9: H₂SO₄. Welche Reihe der pKs-Werte (d.h. Beginn mit stärkster Säure) ist korrekt?

a)	2 > 3 > 7	
b)	1 > 8 > 5	
c)	1 > 3 > 9	
d)	6 > 8 > 5	

Je Haup	Hauptgruppen				THE PARTY OF THE P			ITIIDon	ja jar	3								×
- <u><</u>					Mary of the Mary o		n constant	a abbell							Hauptgruppen	Den		Edelnase
-:									,									acrigance 18
Wasserstoff																		0
6/00'1	¥																	
3 Lithium	Be 4												E #	4 ×	15 VA	91 V	. 11	2 He Helium
6,940	9,01218											١	5	9	,		VII.V	4,002602
Na Natrium	Magnesium			4	ľ	9	7	e					Bor 10,811	C Kohlenstoff 12,011	N Stickstoff 14,0067	8 O Sauerstoff 15,9994	9 F Fluor 18,998403	10 Neon 20180
11606,22	24,305	a =		IVB	V B	VIB	VIIB	•	6	10	=	12	13 A A	7 1	15	16	17	
K Kalium		. Scandium		1.	, 23 V	24 Cr	12, 725 Mar	26	VIII B	28		BII 8	Aluminium 26,98154	Silictum 28,0855	Phosphor 30,97376	Schwefel 32,066	Cl Chlor 35,453	18 Ar Argon 39 948
17	8	44,95591		47,867		1 Chrom 5 51,996 (Mangan 54.9380	Elseh	Cobalt	Nickel 3	ð	Z	Ga Ga	32 Ge	. 33	34	35	36
Rubidium 85,4678	5r Strontium 87.62	Vttrlum		40 cr	NA VI	42. Mo	43 6.A		58,9332	58,6934	清料 22	17165 39 AN	69,723	Germanium 72.61	Arsen 74,9216	5e len 78,96	Brom 79,904	Krypton 83,80
55	56	36,979		91,224	1,92,9064	Molybdan 95.94	Technetium,	R.	Rhodium 102,9055	Palladlum	Ag Silber	Cadmun.	In Indian	50 S	Sb	52 Te	53	54
Cs Cäsium 132,9054	E 10	La Lanthan 138 one	58-71 Lanthanoiden	100	Tal	74 VV	1 75 170	76 Os	177	178	e 21 1 at 140		114,818 81	Zinn 118,71	Antimon 121,760	Tellur 127,60	I lod 126,9045	Xenon Xenon 131,29
87 A.A.	4.4			178,49	180,9479	1183,84	- memin al a	Osmlum 17.190,23	Indium 192,217	Platin 195,08	Au 16.9665	× 0.4	TI Thallium	82 Pb Blei	83 Bi Bismut	84 Polonium	85 A.4	86 A.A. Rn
Francium 223,02a	44	Actinium Ac	Actinoiden R	Rutherfordlum	Dubnium	Seaborglum	Bh	Hs	109 Mr	Um)	1-2-2-	-	CCOC'LOS	207,2	-	209,98a	Astal 209,99a	Radon 222,02ª
Zel Alexandra	3 Rul Attached	1886218	e .		Will The State of	7 (266)a 125	XX (267)*	(269) ³ (2	Meltner/um	1. Ununnillum	Ununtantum (ZZZ)				Metalle		. Nichtmetalle	etalle
vel, monnings	Prints and bob.								THE PROPERTY OF THE PARTY OF TH		0	,						

³ Ref. Atommasse eines gut hekannten Isotops.

b. Rel. Atommasse des am besten zugänglichen, Imglebigen Isotops

C Für handelsübliches Lithium schwankt die rel. Atommasse zwischen 6,94 und 6,99

As kein stabiles Isotop bekannt

Die sehr kurzlebigen Elemente 112, 114, 116 und 118 sind in der Tabelle nach nicht berücksichtigt

71 Lu Lutetium	اع
70 Yb Ytterbium 173.04	
69 Tm Thulium 168,9342	ğ
68 Er Erbium 167.26	100 Fm Fm Fermium 257,10a
67 Ho Holmlum 164,9303	99 Ensteinium 252,08ª
66 Dy Dysprosium 162,50	98 Cf Cf Californium 252,08ª
	97 BK BK Berkelium 249,08ª
64 Gd Gadolinium 157,25	
63 Eu Europium 151,96	Am Americiun 241,06ª
62 Sm Samarium 150,36	Pu Plutonium 239,05b
61 A.A. Promethium 146,92a	Np Neptunium 237,0482b
60 Nd Neodym 144,24	U Uran 238,029
59 . Pr Praseodym 140,9077	Protactinium 231,0359b
58 Ce Cer 140,12 90 •••	Thorium 232,0381
Lanthanoiden	