Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Klausur zur Physikalischen Chemie für Studierende der Biologie und Molekularen Medizin 06.02.2016

Name (Drue	ckbuchs	taben)									
Vorname:											
Matrikelnur	mmer:										len.
Aufgabe Nr.	1	2	3	4	5	6	7	8	9	Gesamt	
Punkte	12	12	14	12	15	15	10	10	10	110	
							*				1
Ich bin mit	der Bel	kanntgabe	des Kla	usurergeb	onisses (N	Iatrikelnu	ummer un	d Punkte Ja	zahl) in	Ilias einverstand	en.
Unterschrift	t										
Hiermit erk	läre ich,	dass ich c	lie Klaus	ur eigenh	ändig ang	gefertigt h	nabe.				
Unterschrift	t										
Die Klausur Erlaubte Hi	r muss n lfsmittel	nit Kugels : Taschen	chreiber rechner (oder dokt (gelöschte	umentech r Speiche	ter Tinte er)	geschrieb	en werde	n.		

Viel Erfolg!

Reduktions-Halbreaktion	E^{Θ}/V	Reduktions-Halbreaktion	E^{\oplus}/V
$Ag^+ + e^- \rightarrow Ag$	+0.80	$1_2 + 2e^- \rightarrow 2I^-$	+0.54
$Ag^{2+} + e^- \rightarrow Ag^+$	+1.98	$I_3^- + 2e^- \rightarrow 31^-$	+0.53
$AgBr + e^- \rightarrow Ag + Br^-$	+0.0713	$\ln^+ + e^- \rightarrow \ln$	-0.14
$AgCl + e^- \rightarrow Ag + Cl^-$	+0.22	$\ln^{2+} + e^- \rightarrow \ln^+$	-0.40
$Ag_2CrO_4 + 2e^- \rightarrow 2Ag + CrO_4^{2-}$	+0.45	$\ln^{3+} + 2e^- \rightarrow \ln^+$	-0.44
$AgF + e^- \rightarrow Ag + F^-$	+0.78	$\ln^{3+} + 3e^- \rightarrow \ln$	-0.34
$AgI + e^- \rightarrow Ag + I^-$	-0.15	$In^{3+} + e^- \rightarrow In^{2+}$	-0.49
$Al^{3+} + 3e^- \rightarrow Al$	-1.66	$K^+ + e^- \rightarrow K$	-2.93
$Au^+ + e^- \rightarrow Au$	+1.69	$La^{3+} + 3e^- \rightarrow La$	-2.52
$Au^{3+} + 3e^- \rightarrow Au$	+1.40	$Li^+ + e^- \rightarrow Li$	-3.05
$Ba^{2+} + 2e^- \rightarrow Ba$	-2.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.36
$Be^{2+} + 2e^{-} \rightarrow Be$	-1.85	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$Bi^{3+} + 3e^- \rightarrow Bi$	+0.20	$Mn^{3+} + e^- \rightarrow Mn^{2+}$	+1.51
$Br_2 + 2e^- \rightarrow 2Br^-$	+1.09	$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	+1.23
$BrO^{-} + H_{2}O + 2e^{-} \rightarrow Br^{-} + 2OH^{-}$	+0.76	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	+1.51
$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.87	$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	+0.56
$Cd(OH)_2 + 2e^- \rightarrow Cd + 2OH^-$	-0.81	$MnO_4^{2-} + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^-$	+0.60
$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40	$Na^+ + e^- \rightarrow Na$	-2.71
$Ce^{3+} + 3e^{-} \rightarrow Ce$	-2.48	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	+1.61	$NiOOH + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$	+0.49
$Cl_2 + 2e^- \rightarrow 2Cl^-$	+1.36	$NO_{3}^{-} + 2H^{+} + e^{-} \rightarrow NO_{2} + H_{2}O$	+0.80
$CIO^{-} + H_2O + 2e^{-} \rightarrow CI^{-} + 2OH^{-}$	+0.89	$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	+0.96
$CIO_4^- + 2H^+ + 2e^- \rightarrow CIO_3^- + H_2O$	+1.23	$NO_3^- + H_2O + 2e^- \rightarrow NO_2^- + 2OH^-$	+0.10
$CIO_4^- + H_2O + 2e^- \rightarrow CIO_3^- + 2OH^-$	+0.36	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	+0.40
$Co^{2+} + 2e^- \rightarrow Co$	-0.28	$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	+1.23
$Co^{3+} + e^- \rightarrow Co^{2+}$	+1.81	$O_2 + e^- \rightarrow O_2^-$	-0.56
$Cr^{2+} + 2e^{-} \rightarrow Cr$	-0.91	$O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^-$	-0.08
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	+1.33	$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$	+2.07
$Cr^{3+} + 3e^- \rightarrow Cr$	-0.74	$O_3 + H_2O + 2e^- \rightarrow O_2 + 2OH^-$	+1.24
$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.41	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13
$Cs^+ + e^- \rightarrow Cs$	-2.92	$Pb^{4+} + 2e^- \rightarrow Pb^{2+}$	+1.67
$Cu^+ + e^- \rightarrow Cu^-$	+0.52	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.36
$Cu^{2+} + 2e^{-} \rightarrow Cu$	+0.34	$Pt^{2+} + 2e^- \rightarrow Pt$	+1.20
$Cu^{2+} + e^- \rightarrow Cu^+$	+0.16	$Pu^{4+} + e^- \rightarrow Pu^{3+}$	+0.97
$F_2 + 2e^- \rightarrow 2F^-$	+2.87	$Ra^{2+} + 2e^- \rightarrow Ra$	-2.92
$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44	$Rb^+ + e^- \rightarrow Rb$	-2.93
$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.04	$S + 2e^- \rightarrow S^{2-}$	-0.48
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	+0.77	$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.05
$[Fe(CN)_6]^{3-} + e^- \rightarrow [Fe(CN)_6]^{4-}$	+0.36	$\operatorname{Sn}^{2+} + 2e^{-} \rightarrow \operatorname{Sn}$	-0.14
$2H^+ + 2e^- \rightarrow H_2$	0, per Definition	$Sn^{4+} + 2e^- \rightarrow Sn^{2+}$	+0.15
$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83	$Sr^{2+} + 2e^- \rightarrow Sr$	-2.89
$2HBrO + 2H^{+} + 2e^{-} \rightarrow Br_{2} + 2H_{2}O$	+1.60	$Ti^{2+} + 2e^- \rightarrow Ti$	-1.63
$2HCIO + 2H^{+} + 2e^{-} \rightarrow Cl_{2} + 2H_{2}O$	+1.63	$Ti^{3+} + e^- \rightarrow Ti^{2+}$	-0.37
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	+1.78	$Ti^{4+} + e^- \rightarrow Ti^{3+}$	0.00
$H_4XeO_6 + 2H^+ + 2e^- \rightarrow XeO_3 + 3H_2O$	+3.0	$Tl^+ + e^- \rightarrow Tl$	-0.34
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	+0.79	$U^{3+} + 3e^- \rightarrow U$	-1.79
$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	+0.27	$U^{4+} + e^- \rightarrow U^{3+}$	-0.61
$Hg^{2+} + 2e^- \rightarrow Hg$	+0.86	$V^{2+} + 2e^- \rightarrow V$	-1.19
$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	+0.92	$V^{3+} + e^- \rightarrow V^{2+}$	-0.26
$Hg_2SO_4 + 2e^- \rightarrow 2Hg + SO_4^{2-}$	+0.62	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
	,		12/5/04/07/

$$\frac{2,303 \text{ RT}}{F} = 0,059 \text{ V}, \quad R = 8,314 \text{ Jmol}^{-1} \text{K}^{-1}, \quad F = 96500 \text{ As mol}^{-1}, \quad N_A = 6 \cdot 10^{23} \text{ mol}^{-1}, \\ e = 1,6 \cdot 10^{-19} \text{ As}, \quad c = 3 \cdot 10^8 \text{ ms}^{-1}, \quad h = 6,6 \cdot 10^{-34} \text{ Js}, \quad m_e = 9,1 \cdot 10^{-31} \text{ kg}$$

Punkte: 12

Berechnen Sie für die Reaktion (alle Größen bei 298 K)

$$CH_4(g) + H_2O(g) \longrightarrow CH_3OH(g) + H_2(g)$$

- a) die Standardreaktionsenthalpie $\Delta_r H^\Theta$. Ist die Reaktion exotherm oder endotherm?
- b) die Standardreaktionsentropie $\Delta_r S^\ominus$
- c) Wie groß ist die Standardgleichgewichtskonstante? In welcher Richtung läuft die Reaktion freiwillig ab?

T = 298 K, p = 1 bar	$\frac{\Delta_{\rm B} {\rm H}^{\rm \ominus}}{{\rm kJmol}^{-1}}$	$\frac{S^{\Theta}}{J K^{-1} mol^{-1}}$	
$CH_4(g)$	- 74,8	186,3	
$H_2O(g)$	- 241,8	188,8	
CH ₃ OH(g)	- 200,7	239,8	
$H_2(g)$	0	130,7	

Aufgabe 2 Punkte: 12

a) Ein gasförmiger Stoff hat bei 1 bar und einer Temperatur von 100 °C die Dichte 2,52 g L⁻¹. Der Stoff verhält sich als ideales Gas. Wie groß ist seine Molmasse?

b) Wie groß ist die mittlere Geschwindigkeit ("Wurzel aus dem mittleren Geschwindigkeitsquadrat") eines Wassermoleküls bei 200°C? (M = 18g mol⁻¹)

Aufgabe 3 Punkte: 14

Sie haben 250 g Butter im Tiefkühlschrank bei -20°C aufbewahrt. Um die Butter schnell streichfähig zu machen, legen Sie diese in 1 Liter (= 1kg) Wasser, das die Temperatur 35°C hat.

 $c_p(Butter)=1,9\ JK^{-1}g^{-1},\ c_p(Wasser)=4,18\ JK^{-1}g^{-1}$ Berechnen Sie:

- a) die Endtemperatur des Systems nach Temperaturausgleich,
- b) die von der Butter aufgenommene Wärmemenge,
- c) die Entropieänderung der Butter, des Wassers und des Gesamtsystems beim Temperaturausgleich.

Aufgabe 4

Punkte: 12

Für die Reaktion $ATP + H_2O \rightarrow ADP + Phosphat$

findet man bei 298 K: $\Delta_r G^0 = -31,0 \text{ kJ mol}^{-1}$ und $\Delta_r H^0 = -24,3 \text{ kJ mol}^{-1}$

a) Wie groß ist die Gleichgewichtskonstante $\,\mathrm{K}^{\,0}\,$ der Reaktion bei 25 $^{\circ}\mathrm{C}$?

b)Wie groß ist K⁰ bei 50°C?

c) Wie groß ist $\Delta_r S^0$ bei 25°C?

Aufg. 5 Punkte: 15

a) Zeichnen Sie die Abhängigkeit des chemischen Potentials von Wasser von der Temperatur, das beim Erhitzen vom festen in den flüssigen und dann in den gasförmigen Zustand übergeht (p = 1 bar = konstant).

- b) Zeichnen Sie die Bereiche der festen, flüssigen und gasförmigen Phase ein.
- c) Zeichnen Sie auf der T-Achse den Schmelzpunkt und den Siedepunkt ein.
- d) Was bedeuten die Steigungen der Kurven?
- e) Zeichnen Sie den Verlauf des chemischen Potentials ein, wenn in der flüssigen Phase ein zweiter Stoff gelöst ist.
- f) Zeichnen Sie die auf der T-Achse die Gefrierpunktserniedrigung und die Siedepunkterhöhung ein.
- g) Wie groß ist die Änderung des chemischen Potentials des Lösungsmittels bei 298 K, wenn ein Stoff darin gelöst ist, dessen Stoffmengenanteil x = 0,1 ist?

Wir haben die folgende elektrochemische Zelle:

$$Cu|Cu^{2+}(aq)||Fe^{2+}, Fe^{3+}(aq)|Pt$$

Die Konzentrationen der Reaktionsteilnehmer sind

$$[FeCl_2] = 10^{-2}M, [FeCl_3] = 10^{-1}M, [CuSO_4] = 10^{-3}M$$

- a) Wie lauten die Reaktionsgleichungen für die Halbzellenreaktionen und die Gesamtreaktion der Zelle?
- b) Wie groß ist die Standard EMK? Wie groß ist die Zahl der transferierten Elektronen?
- c) Wie groß ist die Gleichgewichtskonstante der Reaktion?
- d) Wie lautet die Nernst'sche Gleichung und wie groß ist die EMK bei T = 298 K und den angegebenen Konzentrationen?

Punkte: 10

Ein Stoff A reagiert zu B nach einer Reaktion zweiter Ordnung:

 $2 A \rightarrow B$

Die Anfangskonzentration von A ist $3\cdot 10^{-4}$ M. Nach 100 s sind noch 60 % der Ausgangskonzentration vorhanden.

Wie groß ist die Geschwindigkeitskonstante?

Aufgabe 8 Punkte: 10

Es wird 1 g Thiaminhydrochlorid (Vitamin B1) in 1 mL Wasser gelöst. Das Molekül dissoziiert und es wird ein pH = 3.0 gefunden. Die Protonen aus der Dissoziation des Wassers und seine Pufferkapazität werden vernachlässigt.

Wie groß ist die Dissoziationskonstante (Molmasse: 337,3 g mol⁻¹)?

Aufgabe 9

Punkte: 10

Kurze Frage – kurze Antwort (ein Satz):

- 1. Was sind intensive Zustandsgrößen? (allgemein und 2 Beispiele)
- 2. Was ist ein ideales Gas?
- 3. Was ist die anschauliche molekulare Bedeutung der Innere Energie?
- 4. Was ist die anschauliche molekulare Bedeutung der Entropie?
- 5. Was versteht man unter der Reaktionsordnung?